The overarching goal of the Center for Cardiovascular Simulation (CCS) is developing computational biomechanical models for understanding heart valve and heart disease progression for developing clinical interventions, including prosthetics devices. We develop or utilize a range of unique in-vivo and in-vitro data for elucidating mechanisms that underlie the observed pathologies.  Our modeling focus is the detailed incorporation of this data to provide a high level of physical and physiological realism and validation, working at the continuum-cellular, fibrous tissue, and whole organ levels. We ultimately seek to provide cardiovascular scientists and clinicians with advanced simulations for the rational development of treatments for structural heart and heart valve diseases. Such simulations can ultimately lead to reduction in development time, lowering of morbidity and mortality, reduced re-operative rates, and lessened post-operative recovery time.  Moreover, the development and use of these tools in the context of patient-specific models will ultimately also allow clinicians to craft cardiovascular therapies that are optimized for the cardiovascular system of individuals, with a resulting increase in success and decrease in risk adverse side effects.

Michael Sacks, Director


FEATURED STORY: Supercomputers Listen to the Heart


CCS Group photo taken June 11, 2015

Downloadable Brochure (PDF)